Discrete time Riccati equation and the invariant subspaces of linear operators

نویسنده

  • JARMO MALINEN
چکیده

Let H and Y be separable Hilbert spaces, U finite dimensional. Let A ∈ L(H), B ∈ L(U, H), C ∈ L(H,Y ), D ∈ L(U,Y ), and suppose that the open loop transfer function D(z) := D + zC(I − zA)B ∈ H∞(U, Y ). Let J ≥ 0 be a cost operator. We study a subset of self adjoint solutions P of the discrete time algebraic Riccati equation (DARE)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hamiltonians and Riccati Equations for Linear Systems with Unbounded Control and Observation Operators

In this paper we construct infinitely many selfadjoint solutions of the control algebraic Riccati equation using invariant subspaces of the associated Hamiltonian. We do this under the assumption that the system operator is normal and has compact inverse, and that the Hamiltonian possesses a Riesz basis of invariant subspaces.

متن کامل

Intervals of solutions of the discrete-time algebraic Riccati equation

If two solutions Y ≤ Z of the DARE are given then the set of solutions X with Y ≤ X ≤ Z can be parametrized by invariant subspaces of the closed loop matrix corresponding to Y . The paper extends the geometric theory of Willems from the continuous-time to the discrete-time ARE making the weakest possible assumptions.

متن کامل

An efficient LQR design for discrete-time linear periodic system based on a novel lifting method

This paper proposes a novel lifting method which converts the standard discrete-time linear periodic system to an augmented linear time-invariant system. The linear quadratic optimal control is then based on the solution of the discrete-time algebraic Riccati equation associated with the augmented linear time-invariant model. An efficient algorithm for solving the Riccati equation is derived by...

متن کامل

Riemannian Newton and conjugate gradient algorithm for computing Lagrangian invariant subspaces ∗

The computation of Lagrangian invariant subspaces of a Hamiltonian matrix, or the closely related task of solving algebraic Riccati equations, is an important issue in linear optimal control, stochastic control and H∞-design. We propose a new class of Riemannian Newton methods that allows to compute isolated Lagrangian invariant subspaces of a Hamiltonian matrix. The algorithm implements a vari...

متن کامل

Existence of a Mean-Square Stabilizing Solution to a Modified Algebraic Riccati Equation

In this paper, we investigate a mean-square stabilizing solution to a modified algebraic Riccati equation (MARE), which arises in our previous work on the linear quadratic optimal control for linear time-invariant discrete systems with random input gains. An explicit necessary and sufficient condition ensuring the existence of a mean-square stabilizing solution is given directly in terms of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011